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In the flow of gas-drop mixtures (mixtures of a gas with a large number of liquid drops) 
about bodies, the drops are deformed and fragmented due to the difference in the velocities 
of the phases. The fine secondary drops formed due to the fragmentation of the coarse ini- 
tial drops are rapidly vaporized and, as a result, have a greater effect on the character 
of flow about the body than do solid particles. The present study is devoted to calculation 
of the flow of vapor-drop mixtures about bodies. The problem is formulated, the basic equa- 
tions are written, and features of the numerical algorithm are discussed. Some of the calcu- 
lated results are reported. The effect of inert solid particles suspended in a gas on condi- 
tions of flow about bodies was studied in [1-3]. 

i. Basic Assumptions. We will suppose that the mixture is monodisperse, the drops are 
incompressible and do not collide with one another, the effects of viscosity and heat con- 
duction are significant only in processes involving interaction of the phases, drop frag- 
mentation occurs under certain conditions and takes place by the mechanism of stripping of 
the surface layer, the velocities and temperatures of the already-separated fine drops and 
the vapor are the same, and some of the separated drops are vaporized in the gas flow. Here, 
the vaporization occurs under equilibrium conditions (the temperatures of the fine drops and 
the vapor are equal to the saturation temperature). We also assume that phase transforma- 
tions can take place on the surface of the coarse drops only in the case where stripping of 
the surface layer does not occur. Below, the index i is used to denote parameters of the 
medium consisting of a one-velocity, one-temperature mixture of vapor and small drops (the 
"effective vapor"), the indices iv and 12, respectively, denote parameters of the mixture's 
components - the vapor and small drops - and the index 2 denotes parameters of the coarse 
drops. 

The following relations link the true densities pl ~ 0 0 , Pzv , P2 , the corrected (spread 
over the volume of the mixture) densities Pz, Pzv, P12, Pc, and the volumetric contents ~1, 
~Iv, ~12, ~= of the effective vapor, its vapor and liquid components, and the coarse drops 

PI = cqP ~ P2 = cz~P ~ a l  + ~ = 1, o: 2 = nrtda/6, 
o 

Ply = (ZlVPl~, 012 = ~12~ )0, Ol~ ~- P12 = Pl' ~i~ -~ C%12 = (~I 
(1.1) 

(n and d are the number of coarse drops per unit volume of the mixture and their diameter). 

2. Differential Equations of Motion. Within the framework of the above assumptions, 
the equations of mass conservation for the effective vapor and coarse drops and the equation 
of conservation of the number of coarse drops for two-dimensional nonsteady motion with pla- 
nar symmetry have the form 

OP2. + OPlUl aplv....__.s .s .v 
o---7 T + ag = n]2 + n]2, 

ope Op2ue ap~t.,~ .s .~ On Onu 2 Onv~ 
a - - - T + T +  o - - - - - ~ = - - n ] 2 - - n h ,  "ST+ ---ff~-z +--'~-y = 0  

(2.1) 

(ui and v i are components of the velocity vector v i (i = i, 2),of the effective vapor 
and the coarse drops over the axes x and y; j2 v and j2 s are the rates of vaporization and 
stripping of one coarse drop). 

We write the momentum conservation equations for the effective vapor and the coarse 

drops in the form 
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Here, p is pressure; f is the force acting from the direction of the carrier phase on a 
single coarse drop. It is assumed that the characteristic velocity of the liquid under- 
going stripping and vaporization (from the surface of the coarse drops) is equal to the velo- 
city of the coarse drops. 

The equation describing the flow of heat to the drops and the equation for the total 
energy of the mixture as a whole are written in the form 

()~2('2 dO )e jl,' ) I)Q/!o ~,) ,v 
at + ' "-" ~ " + " " - nq  . . . . .  :@e. ,  - -  n.he2,~ , d a" 0 !/ . . . .  

o (P~:;1 i P,,E2) 
+ d iv  ( l h E , v l  + p,2E,,_v.,) + div  ( ~ d ) v l  + %/)v~) 

0 t 

( 2 . 3 )  

where el, e2, Ez, and E 2 are the internal and total energies of the effective vapor and the 
coarse drops; q2x is the rate of flow of heat from the interior of the coarse drop to its 
surface (the temperature of the bulk of the liquid may differ from the temperature on its 
surface); e2s is the internal energy of the coarse drops in the saturated state. 

Using the kinetic energy theorem, it is easy to use Eqs. (2.1)-(2.3) to obtain an equa- 
tion describing the flow of heat to the effective vapor 
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Here, q z 2  is the rate of heat flow from the effective vapor to the surface of the coarse 
drop; izs is the enthalpy of the effective vapor in the saturated state. The first term in 
the right side of (2.4) is connected with the change in the internal energy of the effective 
vapor due to its compression (or expansion), the second term is the work done by the phase 
interaction force, the third term is the rate of heat flow from the effective vapor to the 
phase boundary, and the remaining terms are connected with the change in the internal energy 
of the effective vapor due to the vaporization of coarse drops and stripping of their surface 
layer. In contrast to (2.3), Eq. (2.4) has a nondivergent and appreciably more cumbersome 
form. 

3. Equations of State of the Phases. We will assume that the vapor is calorically 
perfect, while the condensed phase will be regarded as an incompressible medium with a con- 
stant heat capacity. Then the equations of state of the effective vapor and the coarse 
drops can be written in the form 

p = p t H t T l ,  el = cv1T1, 

R t = x l o 1 ~ o / a l v  , c v l  = x t v c v o  @ xl.:.,_, (3 .1)  

x l v - q - x a 2 =  1,  x~v = p j o / p i ,  x l ~ =  P l / t q ;  

p~ = const ,  e 2 = c27' ~ (B~, Cv~, c~ = cor~s~), ( 3 . 2 )  

w h e r e  R v ,  CVv , a n d  c2 a r e  t h e  g a s  c o n s t a n t  a n d  t h e  h e a t  c a p a c i t y  o f  t h e  g a s  a n d  l i q u i d  a t  
c o n s t a n t  v o l u m e ;  Tz a n d  T2 a r e  t h e  t e m p e r a t u r e s  o f  t h e  g a s  a n d  d r o p ;  X z v  a n d  x z 2  a r e  t h e  
relative mass fractions of vapor and fine drops in the effective vapor. Due to the varia- 
bility of R1, the effective vapor is not calorically perfect. 

Since the mass fractions of the vapor Xzv and the fine drops x12 depend on the rate of 
phase transformations taking place on the fine drops, then system (2.1)-(2.4), (3.1), and 
(3.2) is still not closed. To determine xlv and xz2 , we use the assumption of phase equi- 
librium in the effective vapor. Here, it is supposed that the temperature of the effective 
vapor in the presence of fine drops is equal to the saturation temperature: 
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r ~ -  T~(p). (3.3) 

Here, T s is the saturation temperature, connected with the pressure by the Clapeyron-Clausius 
equation. Inserting (3.3) into (3.1) and taking (i.i) into account, we find equations which 
link the unknown pressure p and the mass and volume contents Xlv, ~iv: 

P = thH,~(P) ,  e~ = cwTs(p), R~ = x~vRv/al~, 
(3.4) 

Cw = x]~cv~ + (l--xj~)c2, a,~ = l--[p~ + (1--x~)p~]/p~. 

With known values of Pl and P2 and the internal energy el, obtained during integration of 
differential equations (2.1)-(2.3), and with an assigned relation Ts(P), Eqs. (3.4) can be 
used to determine three unknown parameters of the effective vapor: p, Xlv, and alv. 

We can use (3.4) to obtain the algebraic equation 

= o, ( 3 . 5 )  P - - B ( P t ,  P2) T~(p )+D[A(e  O-Ts(p)]  

el. ( t 
where  A (e 0 = 7--'~ B (Pl, P.~) = I Pl~P'2~p.] J (vvl --_%/cVvt) plc2" D = p0R~ . 

The dependence of T s on pressure is approximated by the following function for a broad 
range of substances 

Ts (p) = T , / (p ,  - -  In p) 
( 3 . 6 )  

(T, and p, are constants). 

Equation (3.5) cannot normally be solved for p. However, it can readily be solved by 
iterative procedures. If the pressure is found by means of (3.5), then the mass fraction of 
the vapor can be determined from the equation 

x,+ = [A(e~) -  ~ ( p ) l / F ~ ( p ) ( F  = c v : / c 2 -  t), (3.7) 

being a consequence of the equation of state el = cviT s. If here we obtain XIV ~ I, this 
means that the fine drops are completely vaporized and, instead of the effective vapor, we 
have normal superheated vapor. In this case, the temperature and pressure of the vapor can 

be found from (3.1) with Xlv = i. 

4. Laws of Phase Interaction. To close system (2.1)-(2.3), (3.1)-(3.3), we need to 
assign laws of phase interaction j2 s, jJ, ~ , q1z and q2z. Following [4], the rate of strip, 
ping j2 s of the coarse drops will be assigned as follows: 

. ~ -  tO., We,2 < We+, 
]~ - tJ:/,, We~2 ~> We~, We~ = 0 . 5  R e ~  ~, 

] L  = 1x (t,?o) ' /~ (d/2)~/~ I v ~ - -  v., I,/.,, 1,: --~ 1.3 - -  2 kg 5 / ~ ? @ / ~ . ~ e ~  / ~ ) ,  

We,. ,  = p?~d I v ,  - -  vz Iz/(r, Re~2 = p%d I v~ - -  v2 I/~,~. 

(4.1) 

Here, Re12, Wel2, We c are the Reynolds number, Weber number, and critical Weber number; ~ and 
~iv are the surface tension of the drop and the absolute viscosity of the gas. 

To assign the rate of vaporization of the dro p j2 v, we use the formula [4, 5] 

.~ /0, ]~ =f= 0, ( 4 . 2 )  
]2 ~ [ .v ,s .v 

(~ i s  t h e  h e a t  o f  v a p o r i z a t i o n ) .  E q u a t i o n  ( 4 . 2 )  was w r i t t e n  w i t h  a l l o w a n c e  f o r  t h e  assump-  
t i o n  that no phase transformation takes place on the coarse drops in the presence of strip- 

ping of their surface layer. 

Following [4, 5], we will proceed as below in assigning the mechanical interaction f 
between the gas and the drops and the rate of heat flow to the surface from the carrier 
phase qiz and from inside the drop q2Z 
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t = (ad~18)  o t t o , ,  I,'~ - v~ I ( , ' ,  - v 2 ,  

[o, j ~ + o ,  [o i + o ,  

,q*~, j~ = o, tq._,> J~ = o, 
qlr. = nd)~lv  Nu~  (Ta - -  T z ) ,  q.,_~ = ad)~.~ Nu~ (T.  2 - -  T~-), 

(4.3) 

where C d is the drag coefficient of the drop; llv and X2 are the heat-transfer coefficients 
of the gas and drop; Nu I and Nu 2 are the external and internal Nusselt numbers of the drop; 
T Z is the temperature of the drop surface, which is usually assumed to be equal to T s [5]. 
In assigning qiz and q2z, we assumed that under surface-stripping conditions, we could ig- 
nore heat transfer between the gas and the surface layer and between the surface layer and 
the bulk of the drop [4]. 

To assign C d and Nul, we use the relations [5, 6] 

= 0A231Ml~ ") l ,  

[27 Pte~ TM, i{e~2 < 80, 

c] =/0.27 RCy , 80 Re,  < t0 , 
t 2, t0  4 ~< Rq~_, 

1~^lI2 n_lla Nu 1 = 2 + 0.6 .,u n r r l  , P r  1 = Cpv~lV/)VlV, Mtg = Iv  i - -  v.a ]l'aLv. 

(4.4) 

Here, Pr I and MI2 are the Prandtl an d Mach numbers; Cpv is the isobaric heat capacity of the 
gas; a iv is the local speed of sound in the gas. The internal Nusselt number is assumed to 
be constant [5]: Nu 2 = i0. 

5. Formulation of the Problem. We examined the external transverse flow of a gas-drop 
mixture about a flat plate. The theoretical region was assigned in the form of a rectangle. 
The boundary conditions chosen for the body in the flow were impermeability with regard to 
the gas phase and disappearance from the flow with regard to the drop. The condition in 
the incoming flow was used on the left boundary, the symmetry condition was used on the lower 
boundary, and the condition of continuity of the flow was used on the remaining boundaries. 
An undisturbed flow existed at the initial moment of time. It was assumed that the mixture 
was in thermodynamic equilibrium in the incoming flow (v1~ = v2~ , TI~ = T2~). 

As the characteristic length of the problem L,, we used the minimum characteristic 
length L, = min(Lv, LT, Lm, h), where L v and L T are relaxation lengths of phase velocity and 
temperature, L m is the characteristic stripping length (the distance over which the mass of 
the drop is substantially reduced due to stripping), and h is the height of the plate. As 
the characteristic time, it was convenient to take ~, = L,/Iv1~ I. The characteristic lengths 
Lv, LT, and L m were found from the expressions [4, 7] 

2.6 n~ 2.~c a M ~ ,a~ I v ~ 11/~ 

07= 5.t~,vih"l'aalq'~ :. =~ ' k ( 97~ )1 /6  

(the subscript ~ pertains to parameters in the incoming flow, M~ and Re~ s are the character- 
istic Mach and Reynolds numbers). In the investigated ranges of values of the governing 
parameters, the height of the plate h is always less than the other characteristic lengths. 
Thus, we took the height of the plate h as the quantity L,, while as ~, we took the charac- 
teristic time ~., = h / i v l ~  I .  

6. Analysis of Similarity Condition~. After reducing system (2.1)-(2.3), (3.1)-(3.3), 
Eqs. (4.1)-(4.4), and the boundary conditions to dimensionless form, we find that the simi- 
larity criteria of the process of flow about the plate take the form of twelve dimensionless 
quantities: 7v, M ~ ,  m, % ~ ,  C, A,  Pr~, R e ~ ,  L w Lm, l~ ,  W e ~  s (m z P2~lPl~,  C ~ Cvv/e ~, A = ~1~/~2, Lv = 
L / h ,  L ~  = L ~ l h ,  - " o " l ~  ~ l ~ l a l ~ ,  W e ~ s  ~ 91~d~al~ /~) .  Here, the criterion a1~ is immaterial, since 
we are studying flows of fairly dilute suspensions (~2~ ~ i, ~i~ ~ I). To analyze the simi- 
larity conditions of the flows, we will separately examine the following three cases. 

A. Drop fragmentation and phase transformations in the flow are absent, i.e., j2 s, 
j2 v = 0. Here. we have eight basic similarity criteria: Yv, M~, m, C, A, Prl, Re~s, ~v" 
The constancy of Re=s, C, A, and Prl is necessary to ensure similarity of the flows 
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in the presence of heat transfer between the phases. Interphase friction phenomena usually 
exert the predominant effect on flow conditions in a gas suspension in the shock layer 
ahead of the body. Thus, the following parameters can be considered the main criteria of 
approximate similarity for flows about bodies: ~v, M~, m, ~v- 

B. Drop fragmentation is absent (j2 s = 0), but phase transformations do take place on 
the phase boundary (j2 v ~ 0). Then the dimensionless heat of vaporization ~ becomes one of 
the similarity criteria. Thus, the similarity of flows in the presence_of phase transforma- 
tions is determined by nine criteria: ~v, M~, m, C, A, Prl, Re~s, Lv, ~. 

C. Drop fragmentation is present (j2 s ~ 0). In this case, the main similarity cri- 
teria for the flow of a ga~-dr~p mixture about a plate will be the seven dimensionless para- 
meters: Yv, M~, m, Re~s, Lm, s We~ s. 

7. Analysis of the Calculation Results. We solved the problem of the one-component 
transverse flow of a vapor-drop mixture about a flat plate. System (2.1)-(2.3), (3.1)-(3.3), 
with closing relations (4.1)-(4.4) and the assigned initial and boundary conditions, were 
reduced to dimensionless form and integrated numerically by the coarse particle method [8, 
9]. To check the correctness of the program that was written and the accuracy of the re- 
sults we obtained, we also solved the problem of the transverse flow of a pure gas about the 
plate. The results of the calculations along the plane of symmetry were compared with re- 
sults which follow from familiar analytical formulas of gasdynamics (the Rankin-Hugoniot 
relations for a shock wave and the Bernoulli integral). The comparison showed good agree- 
ment between the calculated data and analytical formulas throughout the investigated range 
of Mach numbers. We also solved the problem of the transverse flow of a gas with solid 
particles about a flat plate. The numerical solution was compared with the results from 
[i], where a similar problem was solved. The comparison showed that the calculated results 
agreed almost completely with the data in [i]. 

We should note one special feature of the computation which is due to the change in drop 
diameter as a result of the surface-stripping. Drop diameter may decrease substantially 
during the calculation as a result. In order to avoid having to make corresponding changes 
in the space and time steps while maintaining the necessary accuracy, it was proposed that 
drop diameter not become less than a certain minimum value d,. If the diameter reached this 
value, then it was assumed that subsequent stripping of the surface layer of the drop 
occurred as though it were the result of a reduction in the number of drops while drop dia- 
meter remained constant d = d/d~ = d, = const. In the calculations, d, = 0.1-0.2. 

To check for the presence of fine drops in the effective vapor (an equilibrium mixture 
of vapor with fine drops), the temperature T I in each cell of the theoretical region on each 
time level was compared with Ts(p) [T I and T s were found with the condition of complete va- 
porization of the fine drops; meanwhile, as the relation Ts(P), we used Eq. (3.6)]. If 
T I > Ts, then this unambiguously signified that superheated vapor was present without fine 
drops and that the values of p and TI, T s were found correctly. If T I ~ T s, this indicated 
that the effective vapor contained fine drops. In this case, the phase composition of the 
effective vapor was found from (3.7). We used simple iteration to find the pressure from 
Eq. (3.5). We then used the pressure value obtained and (3.7) to determine the mass fraction 
of vapor Xlv. As the initial value of pressure in the iteration formula, we used the pres- 
sure on the preceding time level. 

We studied the effect of three governing parameters (the Mach number of the incoming 
flow M~, the relative mass content m = P2=/PI~ and diameter d~ of the drops) on the char- 
acter of flow about the plate. It was assumed that the incoming flow was an equilibrium 
mixture of vapor with water drops at a pressure of 0.i MPa (T~ = 373 K). The calculations 
were performed in the following ranges of the dimensionless parameters: M~ = 0.7-3; m = 
0.5-2. The diameter d~ was varied from 200 to 600 ~m (here, the values of the character- 
istic dimensionless parameters ~m changed from 1 to 4.8). The results were compared with 
calculations performed in accordance with frozen and equilibrium schemes corresponding to 
the limiting situations d~ = ~ and d~ = 0. 

Throughout the indicated ranges of the governing parameters, the temperature of the 
vapor was greater than the saturation temperature over the entire flow field behind the front 
of the departing shock wave. In connection with this, the fine drops formed during stripping 
of the coarse drops were completely vaporized in the gas flow. Thus, the calculations were 
simplified to a certain extent. They showed that the vaporization of separated fine drops 
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has a major effect on the process of flow about the plate. Phase transformations on the 
coarse drops (with the assumption that stripping is absent) have little effect, since there 
is not sufficient time for such transformations during the characteristic period during 
which the shock wave passes the coarse drops. 

Some of the calculated results are shown in Figs. 1-3. Figure 1 illustrates the effect 
of the presence of stripping and vaporization of drops on the behavior of the corrected den- 
sities of the phases (a) ~i = Pi/Pl ~ (i = i, 2) and p = p/p~ (b) in a shock wave in front of 
a plate (along the plane of symmetry y = 0) at M~ = 2, m = i, and d~ = 200 Dm. The origin 
of the x axis corresponds to the position of the front surface of the plate. The dashed 
lines correspond to flow about the plate of a gas not containing drops, while the solid and 
dot-dash lines correspond to flow of a gas with drops in the presence and absence of drop 
fragmentation and vaporization, respectively (the dotted line shows the corrected density of 
the drops). The thin solid lines show the erosion of the shock front by artificial viscos- 
ity. It is evident that in the absence of stripping and vaporization of drops, the density 
of the vapor in the shock layer behaves nonmonotonically; it increases immediately after the 
shock and then decreases in front of the plate. This pattern is connected with the fact that 
drops behind the shock front are greatly slowed. Here, as a result of the work done by the 
phase interaction force, some of the kinetic energy of the drops is converted to the thermal 
energy of the vapor. The temperature and pressure of the vapor in the shock layer ahead of 
the body increase dramatically. Meanwhile, the temperature increase outstrips the pressure 
increase, so that the density ahead of the plate decreases. In the absence of drop frag- 
mentation and vaporization, the corrected density of the drops in the shock layer increases 
monotonically due to their deceleration. 

The presence of stripping of the drops intensifies the decay of the shock wave and sig- 
nificantly increases the density of the vapor in the wave due to the additional injection of 
vapor during vaporization of the separated fine drops; the corrected density of the coarse 
drops decreases monotonically, which is connected with intensive stripping of their surface 
layer. At the above-indicated values of the governing parameters, the drops are nearly 
completely stripped and vaporized at the distance~-~ 1.6. Thus, they do not reach the sur- 
face of the plate. 

Figure 2 shows the characteristic form of the dependence of the decay of the shock wave 
~s = xs/h (along the plane of symmetry y = 0) on the initial diameter of the drops d~ (line 
2) and their relative mass content m (line i) in the presence (solid lines) and absence 
(dot-dash lines) of stripping and vaporization [the relation ~s(d=) was obtained at m = i, 
while Xs(m ) was obtained at d~ = 400 ~m; Moo = 2 for both cases]. It is evident that the be- 
havior of the dependence of ~s on d~ is qualitatively different: in the presence of strip- 
ping, ~s decreases monotonically with an increase in d~. Conversely, in the absence of 
stripping, it increases monotonically (the value of Xs is the same in both cases in the 
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limit at d~ § ~). Here, stripping has a strong effect on decay of the wave for suffi- 
ciently fine drops (d~ ~ 400 Dm), while this effect is less pronounced for coarse drops 
(d~ ~ 600 Dm). The vaporization of coarse drops has the greatest effect on the decay of 
the shock wave in the limiting case d= = 0. 

Similarly to the relation ~s(d~), the behavior of ~s(m) is qualitatively different in 
the presence and absence of drop stripping. An increase in m is accompanied by an increase 
in the intensity of mechanical phase interaction. In the absence of stripping, an increase 
in m reinforces the phenomenon of "pulling" of the shock front toward the body by the dis- 
perse phase [i]. In the presence of stripping and vaporization, the rate of vapor injection 
increases with an increase in m. Meanwhile, the effect of additional injection of vapor is 
stronger than the "pulling" effect, so the decay of the shock wave increases with an increase 
in m. 

Figure 3 shows the characteristic form of the dependence of the decay of the shock wave 
~s on M~ in the presence (solid lines) and absence (dot-dash lines) of drop fragmentation 
and vaporization (m = i, d~ = 400 Dm), as well as the results obtained for the case of flow 
about a plate of a gas without drops (dashed lines). It is interesting to note that the 
effect of stripping and vaporization on decay of the shock weakens with an increase in M~. 
In the absence of fragmentation and vaporization, the presence of drops in the flow leads to 
a reduction in decay of the wave throughout the investigated range of M~. Stripping and 
subsequent vaporization of separated fine drops usually lead to a marked increase in ~s" 
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